Special Feature: The 29th CMAAO General Assembly & 50th Council Meeting

Symposium ‘“Health Database in an Information Society”

216

[ Taiwan]

The Health Database in an Information Society"

Yu-Chuan (Jack) LI*

Besides paperless-ness and efficiency, the most
valuable application of accumulated, aggregated
Electronic Health Record data may well be their
use to improve quality and patient safety. This
talk describes a Data Interaction Model (DIM)
and a Probabilistic Association Model (PAM)
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THE HEALTH DATABASE IN AN INFORMATION SOCIETY

Why EHR?

+ Paper-less?
¢ Easier to read?

+ Automatic translation? (e.g. different
languages, pro terms = layman’s language)

# Speedy access
+ Concurrent access

+ Provide (big) data to Improve quality
and Safety! (thru decision support systems)

Elements of “Big Data”

+ The degree of complexity within the
data set

4 The amount of value that can be
derived from innovative vs. traditional
analysis techniques

# The use of longitudinal (time-series)
information supplements the analysis
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Defining Big Data

+ Big Data is a collection of data sets so

large and complex that it becomes
difficult to process using on-hand
database management tools or
traditional data processing applications.

Challenges Biomedical BD

+ Locating/accessing data and software tools

# Standardizing data and metadata

+ Extending policies for sharing BD

<+ Organizing, managing, and processing

+ Developing new methods for analyzing &
integrating BD

# Training researchers who can use BD
effectively

Current State of Healthcare

¢ Care is complex
+ Care is uncoordinated

+ Information is often not available to
those who need it when they need it
# As a result patients often do not get

care they need or do get care they don’t
need

10M, Crossing the Quality Chasm, 2000
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Poor Quality

¢45% did receive recommended care

¢Pneumonia = 61%
¢®Asthma =2 47%
¢ Hypertension 2 35%

MecGlynn el al., New England Journal of Medicine, 2003

Data Interaction Model (DIM)

+ Patient profile'

#Lab and exam data?

+ Medications?

# Procedures*

# Diagnoses and problem list®

One-way Interaction Examples

¢ Drug-Drug Interaction as example

+ Redundant drugs

+ Max daily dose (for children and adults)
¢ Unusual frequency

< Inconsistent route/dosage form

+ High alert medication

EHR Data to Improve QPS

Data Interaction Model for Adverse Event detection

Age, sex, allergy, weight,

e.g. Penicillinvs \ height, blood type, body
PCN allergy \ i temperature, ...efc.

Patient

Profile
CBC, DIC, Chem- \

\ \ k‘:‘l‘;-, + | Curment and/or chronic dz,
APTT, \ y FAY h || DM, HIT, Pregnancy...etc.
INR...etc. \ £\ S

20,hCG, PT, APTT, \,

Diagnosis
/Problem

| eg Wafarinvs J
angiogram

YC (Jack) Li et. al., 2004

Two-way Interaction Examples

+ Drug vs Patient Profile
+ Age, Sex, Pregnancy restrictions
< Drug vs Diagnosis/History
+ Contraindications, inconsistent Dx-drug combination
+ Drug-allergy detection
¢ Drug vs Lab
+ Liver, kidney function restrictions
+ Therapeutic dosage
+ Drug vs Procedures
+ Blood-thinners with angiogram
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Results of the Anti-CIN Program

Baseline Anti-CIN

RIS 12 months 12 months

A+ Cre>2 5.50% 3.48%

ACre>1.4 14.00% 9.57%
c 38.60% 38.23%
47.40% 52.20%

3,624 5,318

Carata //duteaﬂ. Sauec[_f

Limitations on DIM (orug vs Dx)

# Diagnosis
#Diabetes Mellitus
+ Medications

QEUQIUCOH (Glibenclamide) v (lower sugar)

#Euclidan (Nicametate)

+ Difficult for manually crafted rules
+ Too many combinations and exceptions

PAM example on Drug-Dx Interaction

4 Drug-Dx interaction in PAM

# Go through 103 million prescriptions
(204m diagnoses in ICD-9CM and 347m drugs in
ATC code) from Taiwan’s National Health
Insurance database

¢ Compute all the association strength
(Q) between Dx/Drugs and Drug/Drug
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Data Interaction Models

+0One way: 5

+ Two way: 10

# Three way: 10

¢ Four way: 5

®Five way: 1

# Total: 31 combinations

Probabilistic Association Model
(PAM)

# Take any number of data elements from
the DIM and compute their association
strengths (Q)

+Q =P(A and B) / P(A)*P(B)
+ Use the combinatorial Q among the
data elements to determine the

probability of the occurrence of a
specific combination

AOP (Appropriateness of Prescription)
determined by Q’s

The AOP model is expressed mathematically as:

(ie {l,l...n};j,k € {l,2,...m}}
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Sample Alert

M\ Drug-Diagnosis Reminder

Under the diagnoses of “X”, “Y™, “/Z” it1s
uncommon to preseribe the following drugs:
#) Medication 1...
*) Medication 2. ..

Do you want to modify your order?

YES NO

Results

With displaying DMQs, %
Human experts Sens Spec PPV NPV
Physicians 76.7 84.9 94.8 50.3
Pharmacists. 743 94.2 98.7 40.6

Overall 75.6 89.5 96.7 45.5

: Sens, itivity: Spec, specificity; PPV, positive predictive value;
NPV, negative predictive value

Mete: Confidence Intervals (Cls) were small for each parameter and are thus omitted from the reported

results.
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A Probabilistic Model for Reducing Medication Errors

Phung Anh Nguyen, Shabbir Syad-Abdu, Lsman labal. Min-Hugl Heu, Chen-Ling Huang, Hslen-Chang LI, Danel Livius Glinclu, Wen
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December 03, 2013
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widely employed in hospitel settings. The aim of this study was to consiruct a probabllistic
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Flow chart of AOP

mOdBI Eva |Uﬂt[0n Randomly selected 100,000 prescriplions in 2003 Taiwan
Step1: T National Health Insurance database to test the model by
Trioder system

Appropriate prescriptions
99 006)

Randomly selected 400 prescriptions consisted of 254
(63.5%) Appropriate prescriptions and 146 (36.5%)
Inapproptiate prescriptions to evaluate by seven human
experts

Inappropriate
prescriptions (906

N = 1600 prescriptions (1018 Appropriate prescriptions
and 384 Inappropriate prescriptions) included:

= 400 prescriptions evaluated by physicians

= 1200 prescriptions evaluated by pharmacists

APRIOpHT WappropiIal
Unknown
13 (0.8%)

Results of PAM Evaluation

¢ 1,400 prescriptions evaluated by
physicians and pharmacists

+ 96% (975/1016) accuracy for appropriate
prescriptions

+45% (263/545) accuracy for inappropriate
prescriptions

¢ With a sensitivity and specificity of
75.5% and 89.5%, respectively.

Research Paradigm from Data Perspective

Diagnosis

Genome /Problem
Transcriptome: ackdvs
Proteome pregnancy
Interactome

e.g Valprolc

¥C (Jack) Li et. al, 2604
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Conclusion

+ With the Big Data approach, QPS can
be improved several orders of
magnitude

# One hospital captures 20,000 high risk
events every year

+ Moving from
Detect = Predict = Prevent

Thank you for your attention
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